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Abstract

Using an analytical model potential which contains resonant and bound states,
we show that the decay of the resonances can be simulated by Lindblad
operators. For that purpose, the unitary time evolution of an initial Gaussian
wave packet in the model potential is compared with the non-unitary time
evolution, obtained by solving the Lindblad equation, of the same wave packet
in a potential which coincides with the model potential in the region of interest
but does not contain resonances. In the latter case, dissipative effects are
accounted for by Lindblad operators which lead to phenomenological friction
and diffusion constants in the equations of motion. We suggest how those
constants can be determined in a non-heuristic way, being directly connected
to the width of the resonance in the model potential which we calculate using
the complex rotation method.

PACS numbers: 03.65.−w, 03.65.Yz, 03.65.Xp

1. Introduction

Open quantum systems have been studied quite intensively in recent decades, covering a
wide spectrum of applications in surface [1, 2], atomic [3–6], nuclear [7–11] and particle
[12, 13] physics and in decay [14, 15], decoherence [16–20] and tunnelling [21–23] processes,
to mention just a few examples. They also present an important framework in quantum
information theory which allows us to study fundamental aspects like e.g., dephasing and
entanglement dynamics of qubits [24–26]. Open quantum systems are characterized by
dissipative interaction with the environment which leads, in general, to a non-unitary time
evolution, and a common approach to describe such a time evolution are master equations for
the density matrix ρ. Among those, the Markovian master equation derived by Lindblad [27]
presents the most general form:

dρ

dt
= − i

h̄
[H, ρ] +

1

2h̄

∑
j

([
Vjρ, V

†
j

]
+

[
Vj , ρV

†
j

])
. (1)
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Here, H denotes the Hamiltonian of the open quantum system, and Vj are operators defined
on the Hilbert space of H, representing the dissipative interaction of the open system with
the environment. There are no further general restrictions on these operators, and their
choice in physical applications is often heuristic, as are also the numerical values of the
phenomenological constant(s), which may appear in the resulting equations of motion as a
consequence. Such a phenomenological approach allows the treatment of problems where
the nature of the dissipative effects is far too complex to be described in detail, such as, for
example, in deep inelastic heavy-ion collisions, where dissipation arises from the excitation of
the internal degrees of freedom, i.e. the nucleons. On the other hand, it is not obvious to what
extent the true dynamics of the system is reflected in such calculations, since in many cases no
experimental data or theoretical results from independent models are available for comparison.
The aim of the present work is to investigate whether the phenomenological constant(s) can
be obtained from external parameters of the considered open system. Hence, we require an
appropriate open system, so that its true time evolution can be obtained independently, and a
subsequent comparison can be made in order to either confirm or disprove the choice of the
phenomenological constant(s).

Resonances present a special case of open systems, where the dissipative character occurs
due to the coupling to the continuum. There exists a number of reliable methods to determine
their positions, widths and time evolution (see, e.g., a recent work by Jentschura et al [28]
where their dissipative terms are also explicitly mentioned). As is well known, the decay
of a resonance is driven by the width, so if we try to describe the effect of resonances on a
physical system in the framework of the Lindblad theory instead of an ab initio treatment, one
can expect the appearing phenomenological constant(s) to be connected to the width in some
way. To investigate this connection, we proceed as follows. In section 2, we propose a model
potential for our analysis and calculate the energy positions of the bound and resonant states,
and the widths of the latter ones using the complex rotation method. In section 3, we repeat
the derivation of the equations of motion including the phenomenological constants from the
Lindblad equation (1) for the given case, and present their solutions. The time evolution of an
initial Gaussian wave packet in the model potential is calculated in section 4, and a comparison
to the Lindblad dynamics is made. From that, the main conclusion of the present work is
formulated. This conclusion is further discussed in section 5. Restrictions and limitations
of the used approach are also discussed at the end. Atomic units are used throughout unless
stated otherwise.

2. The model potential

The Lindblad equation is known to be analytically solvable for a harmonic oscillator potential.
Such a potential, of course, has only bound states but no resonances. On the other hand,
multiplying this potential with a smooth analytical cutoff yields a potential barrier, and hence
resonances do occur. If we consider a one-dimensional harmonic oscillator potential, Uh(q),
(q being the coordinate) with a minimum U0 at q = q0, that is

Uh(q) = 1
2mω2(q − q0)

2 − U0, (2)

where ω is the oscillator frequency, and m is the mass of the particle; the cutoff in the model
potential Um can be implemented in the following form:

Um(q) = Uh(q)

(
1 − 1

1 + exp(−(q − qB)/τ)

)
. (3)

The parameter τ gives the smoothness of the cutoff (in the limit τ → 0, one obtains the
Heaviside step function), and qB is the point at which the cutoff is switched on, thus it
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Figure 1. The model potential Um (3) (solid line) shown together with a harmonic oscillator
potential Uh (2) (dashed line) for m = 1.0, ω = 3.9, q0 = 1.833, qB = 3.35, U0 = 7.0 and τ =
0.19.

corresponds approximately to the position of the barrier. For a better visualization, the model
potential is shown together with a harmonic oscillator potential in figure 1. This model
potential has the advantage that it coincides with a harmonic oscillator potential in the region
q < qB , and hence we can adopt the following approach: while the true time evolution of the
Gaussian wave packet which is initially situated in the region of interest is obtained from the
Schrödinger equation with the full model Hamiltonian

Hm = p2

2m
+ Um(q), (4)

the time evolution given by the Lindblad master equation (1) is calculated for the same initial
wave packet, but with the harmonic oscillator Hamiltonian

Hh = p2

2m
+ Uh(q), (5)

since the effect of the resonances is already accounted for by Lindblad operators, i.e., by the
fact that we use the Lindblad equation. Such an approach seems justified as long as we are
interested only in the local dynamics in the region of interest (q < qB). However, we would
like to emphasize here that the time propagation itself has, of course, to be calculated for the
whole space including the asymptotic region in the first case.

We now proceed with the calculation of the energy positions of the bound states and
resonances, and the widths of the latter ones in the model potential Um. Complex rotation
[29–31] is a widely used tool to treat resonances. If a Hermitian Hamiltonian of the form,

H = − h̄2

2m

∂2

∂q2
+ U(q), (6)

is transformed as q → q exp(iθ) (where θ is a real rotation angle), the resonances are obtained
as its complex eigenvalues:

E = Er − i�/2, (7)

that is, the real part gives the energy position of the resonance, and the negative imaginary
part gives the half width. Bound states are unaffected by the transformation. They appear as

3
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Table 1. Bound and resonant states in the model potential Um. The same parameters as listed in
the caption of figure 1 were used.

State Re(E) −Im(E) = �/2

Bound −5.045 –
Bound −1.155 –
Resonance 2.62 3.3 × 10−2

Resonance 6.21 0.44

eigenvalues of the complex Hamiltonian matrix, but their imaginary parts vanish. Continuum
energies are rotated by the angle 2θ , and can be easily separated from the resonances, whose
positions are independent of the rotation angle. To carry out this procedure, in practice, for the
Hamiltonian (4) we use a B-splines expansion. B-splines are piecewise polynomial functions,
defined on a so-called knot sequence and have several desirable properties (a detailed overview
can be found in [32]). The combination of B-splines with complex rotation is a common
method, mainly in atomic and molecular physics (e.g., [33–36]). The standard numerical
procedure is to embed a knot sequence in a box of sufficient size, and subsequently project the
Schrödinger equation Hψj = Ejψj onto the chosen B-splines set Bi (thus, the eigenfunctions
are expanded as ψj = ∑

i c
j

i Bi). By solving the resulting generalized eigenvalue equation

Hc = EBc, (8)

(where Hij = 〈Bi |H |Bj 〉 and Bij = 〈Bi |Bj 〉) we can directly obtain the energies. The four
lowest physical states are given in table 1. The two bound states lie close to the analytically
known positions of an ideal harmonic oscillator (E1 = h̄ω/2 − U0 = −5.05 and E2 =
3h̄ω/2 − U0 = −1.15), and their distance approximately equals h̄ω (	E = 3.89, h̄ω = 3.9).
This shows that the cutoff influences the bound states only weakly. Moreover, even the energy
gap between the highest bound state and the lowest resonance is of about the same order
(	E = 3.775), due to the fact that this resonance is situated below the barrier. The second
resonance lies above the barrier and is, as will be seen later, not relevant for our study. For
this reason, further resonances, which were found at even higher energies are not listed in the
table.

3. Equations of motion in the Lindblad theory

In this section, we will give a brief derivation of the equations of motion for a harmonic
oscillator from the Lindblad equation and their solutions. This problem has been intensively
studied in the last two decades, and a very detailed treatment can be found, e.g., in [37, 38]
which we are closely following here.

It is convenient to transform the master equation (1) to the Heisenberg picture with
time-dependent operators. For an operator A, it reads

dA

dt
= i

h̄
[H,A] +

1

2h̄

∑
j

(
V

†
j [A,Vj ] +

[
V

†
j , A

]
Vj

)
, (9)

where H is the Hamiltonian (5). For simplicity, we will omit the shift q0 in this part which
is only a trivial coordinate transformation that does not change the equations of motion. The
Lindblad operators for a harmonic oscillator are chosen as first-order polynomials in p and q
(this choice is sometimes referred to as the quantum-mechanical analogue of Hook’s law and
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is, to the best of our knowledge, the only one ever used for a harmonic oscillator). This restricts
the number of the Lindblad operators to two due to the fact that {p, q} gives a basis of such
non-commuting first-order polynomials, and hence only two independent linear combinations
can be constructed. Thus, we have

Vj = ajp + bjq, V
†
j = a∗

j p + b∗
j q, j = 1, 2, (10)

where aj , bj are complex numbers.
First, we consider the expectation values of the coordinate q and momentum p, which are

denoted by

σq = Tr(ρq), σp = Tr(ρp). (11)

Setting A = q (A = p respectively) in (9) and evaluating the commutators, we arrive at two
coupled first-order differential equations which, by introducing a phenomenological friction
constant

λ = −Im
2∑

j=1

a∗
j bj , (12)

can be written in the following form:

d

dt
σq(t) = −λσq(t) +

1

m
σp(t), (13a)

d

dt
σp(t) = −mω2σq(t) − λσp(t). (13b)

With given initial conditions σq(t = 0) = σ 0
q , σp(t = 0) = σ 0

p , the analytical solutions of
(13a), (13b) are (here and in the following, we assume 0 < λ < ω which will be justified in
section 4)

σq(t) = e−λt

(
cos(ωt)σ 0

q +
1

mω
sin(ωt)σ 0

p

)
, (14a)

σp(t) = e−λt
(−mω sin(ωt)σ 0

q + cos(ωt)σ 0
p

)
. (14b)

Next, we consider the second moments which, for two operators A and B, are defined as

σAB = σBA = 1
2 Tr(ρ(AB + BA)) − Tr(ρA)Tr(ρB). (15)

For the three cases A = q, B = q;A = p,B = p and A = q, B = p one obtains (again
by inserting the operator products in (9) and evaluating the commutators) a set of differential
equations that describes the time behaviour of the variances of p and q (denoted by σpp and
σqq , respectively), and their covariance σpq . To write these equations in a compact form, it is
convenient to define the symmetrical covariance matrix:

σ(t) =
(

σqq(t) σpq(t)

σpq(t) σpp(t)

)
. (16)

It is worth mentioning that its determinant appears in the generalized uncertainty relation,

σqq(t)σpp(t) − σ 2
pq(t) � h̄2/4. (17)

Then, the equations can be written in the matrix form as

d

dt
σ (t) = Yσ(t) + σ(t)Y T + 2D, (18)

5
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where we used the abbreviations

Y =
( −λ 1/m

−mω2 −λ

)
, D =

(
Dqq Dpq

Dpq Dpp

)
. (19)

The elements of D are usually called ‘diffusion coefficients’ and are defined as

Dqq = h̄

2

2∑
j=1

|aj |2, Dpp = h̄

2

2∑
j=1

|bj |2, Dpq = −h̄

2
Re

2∑
j=1

a∗
j bj . (20)

Their determination and properties have been thoroughly discussed, especially for the case of
a harmonic oscillator, and different sets of diffusion coefficients were proposed [8, 39–42].
We just mention that, from definitions (12) and (20) and the Cauchy–Schwartz inequality, one
obtains the fundamental constraint

Dqq > 0, Dpp > 0, DqqDpp − D2
pq � λ2h̄2/4, (21)

which ensures the non-negativity of the density matrix for all times. Such diffusion coefficients
are often referred to as ‘quantum mechanical’ while those which do not obey (21) are called
‘classical’ due to the violation of the non-negativity condition. However, the diffusion
coefficients can be determined by postulating a certain asymptotic state (e.g., a Gibbs state),
and they may depend on the thermodynamical temperature of the system. In this case, the
asymptotic state presents an input parameter (this rather general problem of the Lindblad
equation was recently pointed out by Dietz [43]). If one considers the low-temperature limit,
the following set of diffusion coefficients can be derived [8]:

Dqq = h̄λ

2mω
, Dpp = 1

2
h̄λmω, Dpq = 0. (22)

This set satisfies (21) and does not depend on the temperature. Moreover, it has the advantage
that the diffusion coefficients are fully determined by the phenomenological friction constant,
and thus λ becomes the only phenomenological parameter to be found. We can conclude
that the given set (22) is very suitable for our study, and thus it will be used in all further
calculations. For a more comprehensive discussion, we refer to the articles mentioned above.

Now we return to the differential equations (18). Their solutions can also be given in an
analytical form,

σ(t) = etY (σ 0 − σ∞)(etY )T + σ∞, (23)

where σ 0 = σ(t = 0) is the initial covariance matrix, and σ∞ = σ(t → ∞) is its asymptote.
The latter one can be determined from the diffusion coefficients by inserting (23) in (18) which
leads to

Yσ∞ + σ∞Y T = −2D. (24)

The above matrix equation can also be written as a system of three linear equations (since
both sides of (24) are symmetrical matrices), which then can be solved for the elements of
σ∞. The result is

σqq(∞) = (mω)2(2λ2 + ω2)Dqq + ω2Dpp + 2mω2λDpq

2(mω)2λ(λ2 + ω2)
,

σpp(∞) = (mω)2ω2Dqq + (2λ2 + ω2)Dpp − 2mω2λDpq

2λ(λ2 + ω2)
,

σpq(∞) = −λ(mω)2Dqq + λDpp + 2mλ2Dpq

2mλ(λ2 + ω2)
.

(25)

6
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Inserting the diffusion coefficients (22) in the above expressions, the asymptotic values can be
shown to simplify to

σqq(∞) = h̄

2mω
, σpp(∞) = h̄mω/2, σpq(∞) = 0. (26)

The exponential of the matrix that appears in (23) is found by diagonalizing Y:

etY = e−λt

(
cos(ωt) 1

mω
sin(ωt)

−mω sin(ωt) cos(ωt)

)
. (27)

Hence, the time evolution of the first and second moments of the open quantum system is fully
determined by (14a), (14b) and (23) (provided given initial conditions σ 0

q , σ 0
p and σ 0 which,

however, do not influence the asymptotic values), and contains λ as the only free parameter.
Its connection to the resonance widths in the model Hamiltonian will be suggested from a
comparison in the following section.

4. Time evolution, comparison and main conclusion

We consider an initial Gaussian wavefunction of the form

ψ(q, t = 0) = 1(
2πσ 0

qq

)1/4 exp

(
− 1

4σ 0
qq

(
q − σ 0

q

)2
+

i

h̄
qσ 0

p

)
, (28)

which is centered around σ 0
q in q-space with the initial spread σ 0

qq , and σ 0
p is the momentum

expectation value. By means of a Fourier transformation it can also be shown that the initial
spread in p-space, σ 0

pp, is given by the initial spread in q-space as σ 0
pp = h̄2

/(
4σ 0

qq

)
. The

corresponding probability density |ψ(q)|2 (|ψ(p)|2 respectively) preserves the initial Gaussian
form for all times in a potential that is quadratic in q [11, 21, 23], which means that, for a
harmonic oscillator within the Lindblad theory, the time propagation can be obtained by
inserting the first and second moments as they are given by (14a), (14b) and (23) at any time
t. In order to propagate the initial wavefunction (28) in the model potential, we use the same
numerical tools as in section 2 but without complex rotation (i.e., θ = 0). In particular, the
Schrödinger equation for the Hamiltonian (4) is solved numerically in a box of sufficient size,
yielding the box energies εj and the box eigenfunctions ϕj in terms of B-splines:

ϕj (q) =
∑

i

c
j

i Bi(q). (29)

In the following step, the initial wavefunction (28) is expanded in the box eigenstates as

ψ(q, t = 0) =
∑

k

dkϕk(q), dk = 〈ϕk|ψ(t = 0)〉, (30)

and thus the wavefunction for any time t is obtained as a solution of the time-dependent
Schrödinger equation:

ψ(q, t) =
∑

k

dkϕk(q) exp(−iεkt/h̄). (31)

For a suitable comparison between the two approaches we will, as already indicated at the
beginning, restrict ourselves to the region where the model potential overlaps with the harmonic
oscillator, i.e. q � qB . We consider the wave packet to be located at rest around the minimum
of the model potential (which is also the minimum of the harmonic oscillator potential), in
other words, σ 0

p = 0, σ 0
q = q0. We define the norm P contained in the region of interest as

P(t) =
∫ qB

−∞
|ψ(q, t)|2 dq, (32)

7
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Figure 2. Calculated time evolution of P (crosses), shown with a function as given in (34) (dashed
line) with α = � = 6.6 × 10−2. The calculated population of the bound states PB (33) is found to
be PB = 0.947, which agrees with the calculated asymptotic value of P. The slight deviation at the
beginning occurs probably due to the fact that the initial wave packet has small components above
the barrier which are classically allowed outside the region q < qB , and hence they can leave this
region directly without tunnelling. In addition, the presence of a second resonance with a larger
width may also play a role for those components.

and with a moderate choice of σ 0
qq , the initial norm is very close to unity (e.g., P(t = 0) =

0.9987 for σ 0
qq = 0.25 in our following illustrative calculations, and the deviation is most

likely caused by the numerics). Due to the presence of a resonance, we expect this quantity
to decay exponentially and to converge towards the initial population of the bound states PB ,
defined as

PB = |d1|2 + |d2|2, (33)

with the coefficients d1, d2 from the expansion (30) that correspond to the two bound states
(cf table 1). Indeed, if the calculated time evolution of P is compared with a function of the
form

P(t) = (1 − PB) e−αt + PB, (34)

a very good agreement is achieved for α = �, where � is the width of the lowest resonance
(table 1), as shown in figure 2. Hence, we can conclude that only the lowest resonance plays a
role in our case. However, it is not clear how the described norm loss in the region of interest
can be related to Lindblad dynamics, since the latter one is norm conserving. On the other
hand, the energy expectation value is time dependent, and hence it seems more appropriate
to look for a suitable definition of the amount of energy contained in the region of interest in
order to make a reasonable comparison. We propose thus the following definition:

〈E〉(t) = 1

P(t)
Re

(∫ qB

−∞
ψ∗(q, t)Hmψ(q, t) dq

)
, (35)

which will be discussed below.
The box states in which the wavefunction ψ is expanded (30) are orthogonal with respect

to the scalar product:∫ +∞

−∞
ϕ∗

j (q)ϕk(q) dq = δjk. (36)

8
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They are, however, not orthogonal if the integration is taken only from −∞ to qB . Hence,
the expression

∫ qB

−∞ ψ∗(q, t)Hmψ(q, t) dq is, in general, complex since the last term in the
equation below does not vanish:∫ qB

−∞
ψ∗(q, t)Hmψ(q, t) =

∑
k

|dk|2εk

∫ qB

−∞
|ϕk(q)|2 dq

+
∑
k �=j

d∗
j dkεk ei(εj −εk)t/h̄

∫ qB

−∞
ϕ∗

j (q)ϕk(q) dq. (37)

However, the disregard of the complex part in definition (35) can be motivated as follows.
Consider two equivalent expressions for the energy expectation value EH for a usual Hermitian
quantum system with a Hamiltonian, H, and a wavefunction, ψ ,

1

N

∫
ψ∗Hψ = EH = 1

N

∫
(Hψ)∗ψ, N =

∫
|ψ |2, (38)

so that it can also be written as

EH = 1

2N

(∫
ψ∗Hψ +

∫
(Hψ)∗ψ

)
. (39)

Going back to our case, the analogue of the above expression is

〈E〉(t) = 1

2P(t)

∫ qB

−∞
(ψ∗(q, t)Hmψ(q, t) + (Hmψ(q, t))∗ψ(q, t)) dq

= 1

2P(t)

∫ qB

−∞
(ψ∗(q, t)Hmψ(q, t) + h.c.) dq

= 1

P(t)
Re

(∫ qB

−∞
ψ∗(q, t)Hmψ(q, t) dq

)
, (40)

which is exactly definition (35).
Now, we return to the time propagation of 〈E〉. In an ideal harmonic oscillator, the energy

associated with the initial wave packet (28) is given by

E0 = 1

2m

(
σ 0

pp +
(
σ 0

p

)2)
+

1

2
mω2(σ 0

qq +
(
σ 0

q

)2)
, (41)

where σ 0
pp = h̄2

/(
4σ 0

qq

)
. Again, since initially the wave packet is almost completely located

in the region q < qB in the model potential, we expect 〈E〉(t = 0) to be very close to this
value (shifted by U0). Calculating 〈E〉 confirms this expectation (E0 − U0 = −4.60 versus
〈E〉(t = 0) = −4.61). Asymptotically, we expect 〈E〉 to converge towards the energy initially
contained in the two bound states, that is

E∞ = |d1|2ε1 + |d2|2ε2

|d1|2 + |d2|2 , (42)

which is also rather well confirmed by the calculation (E∞ = −5.03 versus 〈E〉(t → ∞) =
−5.04). The calculated overall time evolution of 〈E〉 suggests a fit with a function of the same
form as in (34), i.e.

〈E〉(t) = (E0 − U0 − E∞) e−βt + E∞, (43)

and again good agreement is achieved for β = � (see figure 3). On the other hand, the time
evolution of the energy expectation value for a harmonic oscillator within the Lindblad theory

9
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Figure 3. Calculated time evolution of 〈E〉 (crosses) shown together with the fit (43) (dashed line)
with β = �. As in figure 2, the deviation at the beginning can be explained by the high-energetic
components of the wave packet that leave the region q < qB very fast.

(including the shift U0) reads

EL(t) = 1

2m
(σpp(t) + σp(t)2) +

1

2
mω2(σqq(t) + σq(t)

2) − U0, (44)

where σp(t), σq(t), σpp(t) and σqq(t) are given by (14a), (14b) and (23). For the initial
conditions, which were used to calculate 〈E〉, that is, a wave packet at rest centered in the
potential minimum with no initial covariance

(
σ 0

pq = 0
)
, expression (44) can be analytically

shown to simplify to

EL(t) =
(

E0 − h̄ω

2

)
e−2λt +

h̄ω

2
− U0. (45)

Comparing this with (43) (where β = �), we see that for the case

E∞ ≈ h̄ω

2
− U0, (46)

(which is fulfilled in our calculations, E∞ = −5.03 versus h̄ω/2 − U0 = −5.05) the time
dependence is the same, which leads us to the main conclusion:

λ = �

2
, (47)

in other words, to describe the dissipative effect of a resonance by Lindblad operators of the
form (10), a suitable choice for the phenomenological friction constant (12) is the half width
of the resonance.

5. Discussion and restrictions

The derived conclusion provides certain information about how the phenomenological friction
constant can be determined. This allows a less heuristic approach if the Lindblad equation is
used for the description of resonances, opening new possibilities of applications in nuclear,
atomic and molecular physics. To ensure that the agreement displayed in figure 3 is not
random (i.e., that 〈E〉 generally behaves as suggested in (43)), other numerical values of the
parameters in the potential (3) were imposed, which gives different positions and widths of

10
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the resonances, and yet the same qualitative behaviour was obtained. However, the result
(47) should be seen more as a tendency rather than an absolutely universal recipe, since some
restrictions apply in our calculations. The considered wave packet (28) has a very high overlap
with the bound states, which provides the condition (46) that is necessary for the agreement
between (43) and (45) from which (47) was derived. Furthermore, at high energies (e.g.,
if σ 0

p is large in (28)) the exponential behaviour is disturbed, since a large part of the wave
packet is classically allowed to cross the barrier, and the decay of the norm and the energy
contained in the region of interest occurs faster. Also the role of highly lying resonances
can become more significant, and the dynamics is no longer dominated by one single width.
In that case, extensions of the model to more than one phenomenological constant can be
necessary. Furthermore, it is not clear to what extent definition (35) can really be interpreted
as the amount of energy in the space q < qB . We hope that it was sufficiently motivated, but a
deeper investigation for arbitrary potentials would definitely shed more light on this question
(although the obtained agreement with the Lindblad equation seems encouraging).

Also the potentials that one is confronted with in physical applications are often more
complex than that treated here. Thus, if the Lindblad theory is applied, the local approximation
of the true potential by a harmonic oscillator may not be the best choice, and hence other forms
of Lindblad operators than (10) may be more appropriate, eventually leading to a different set
of phenomenological constants in the equations of motion. Altogether, we can conclude that
in an open system approach to resonances the obtained result may reflect the true dynamics
quite well in some cases. However, in complex resonant systems where a heuristic approach
is inevitable and phenomenological constants similar to (12) appear, relation (47) can still
be adopted at least as a first guess, especially if no other more elaborated alternatives are
available.

Finally, there exist also more fundamental limitations of the approach adopted in the
present work. A rigorous study of master equations for the damped harmonic oscillator [44]
shows that an exact general Liouville operator L, which satisfies ρ̇ = Lρ, does not exist for
arbitrary environment conditions. The Lindblad form is only valid in the weak coupling limit
on a coarse grained time scale. This is, to a rather good extent, fulfilled in the case studied
here (λ/ω ≈ 10−2 ≈ ω−1/	t), but these restrictions should be kept in mind when master
equations of the form (1) are used to describe the reduced dynamics of open quantum systems.
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